Review Article ISSN: 2581-771X

Erythropoietin in the Management of Anemia in HIV: A Review

Emmanuel Ifeanyi Obeagu^{1*}, Getrude Uzoma Obeagu²

¹Department of Medical Laboratory Science, Kampala International University, Uganda.

²School of Nursing Science, Kampala International University, Uganda.

ABSTRACT

Anemia is a prevalent and debilitating complication in individuals living with HIV, significantly impacting their quality of life and overall health. This review examines the potential of erythropoietin (EPO) as a therapeutic intervention for managing anemia in HIV patients. The efficacy of EPO in addressing HIV-related anemia is critically evaluated through a synthesis of existing clinical studies and trials, assessing its impact on hemoglobin levels, quality of life, and broader clinical outcomes. Safety considerations, including potential adverse effects such as thromboembolic events, hypertension, and immunomodulatory effects, are also discussed. The review concludes by addressing challenges and considerations associated with the use of EPO in the context of HIV, highlighting the need for optimal dosing, patient selection, and potential interactions with antiretroviral therapy. Lastly, future directions and research gaps are outlined, emphasizing the necessity for continued investigation to refine the application of erythropoietin in the management of anemia in HIV patients. Overall, this review provides a comprehensive synthesis of the current state of knowledge on EPO in HIV-related anemia, offering valuable insights for clinicians, researchers, and healthcare practitioners involved in the care of individuals living with HIV.

Keywords: Anemia, Adverse Effects, Erythropoietin, Hematopoiesis, HIV, Treatment.

Address of Corresponding Author

Emmanuel Ifeanyi Obeagu; Department of Medical Laboratory Science, Kampala International University, Uganda.

E-mail: emmanuelobeagu@vahoo.com

Crossref Doi: https://doi.org/10.36437/irmhs.2023.6.6.D

Introduction

Anemia stands as a pervasive hematologic complication in the realm of HIV, casting a significant shadow over the well-being of individuals grappling with the virus.1 The interplay between HIV infection and anemia is intricate, involving multifactorial mechanisms that extend beyond the direct impact of the virus on red blood cell production.²⁻³ As individuals navigate the complex landscape of living with HIV, anemia emerges as a critical co-morbidity, often contributing to diminished quality of life, increased morbidity, and heightened healthcare burden.4 In this context, exploring therapeutic interventions that not only address the hematological manifestations but also enhance overall patient outcomes becomes paramount. Erythropoietin (EPO), a glycoprotein hormone pivotal in regulating erythropoiesis, has garnered attention as a potential cornerstone in the

management of anemia associated with HIV. The kidneys predominantly produce EPO in response to reduced oxygen levels, stimulating the bone marrow to produce red blood cells. Given its central role in this physiological process, exogenous administration of EPO holds promise in mitigating the anemia burden in individuals living with HIV. This review aims to provide a comprehensive examination of the current state of knowledge surrounding the utilization of EPO in management of HIV-related anemia, encompassing its mechanisms of action, clinical efficacy, safety profile, and potential challenges.5-16

The efficacy of EPO in addressing HIV-related anemia extends beyond its hematopoietic role, encompassing potential improvements in overall quality of life and functional outcomes. Clinical studies and trials investigating the impact of EPO on hemoglobin levels, patient-reported outcomes, and broader clinical parameters provide a nuanced understanding of its therapeutic potential. Yet, the application of EPO in this context is not devoid of challenges. Concerns regarding optimal dosing strategies, patient selection criteria, and potential interactions with antiretroviral therapy necessitate careful consideration. This review critically assesses the existing evidence, shedding light on both the promises and challenges associated with incorporating EPO into the comprehensive management of anemia in individuals living with HIV

Mechanisms of Anemia in HIV

The mechanisms underlying anemia in individuals with HIV are complex and multifaceted, involving a combination of direct and indirect effects of the virus on hematopoiesis, immune response, and red blood cell survival.HIV directly affects bone marrow function. the primary site hematopoiesis, by infecting and damaging hematopoietic progenitor cells.¹⁷ This impairment leads to a decreased production of red blood cells, contributing to the development of anemia. Additionally, the virus may alter the microenvironment of the bone marrow, disrupting the normal regulatory signals that govern erythropoiesis. Persistent inflammation is a hallmark of HIV infection, driven by the immune system's continuous response to the virus. Chronic inflammation contributes significantly to anemia in HIV through several mechanisms. Proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- α), erythropoiesis, inhibit the interfere with production of erythropoietin (EPO), and lead to impaired iron metabolism. HIV-infected individuals are more susceptible to opportunistic infections, some of which directly impact erythropoiesis. Infections such as mycobacterium avium complex (MAC), parvovirus B19, and cytomegalovirus (CMV) can cause bone marrow suppression, leading to decreased red blood cell production and exacerbating anemia.18-35

HIV infection is associated with a prothrombotic state, leading to various coagulation abnormalities. These coagulopathies can result in

microvascular thrombosis, affecting blood flow to the bone marrow and further compromising the production of red blood cells. HIV-infected individuals often experience malabsorption and nutritional deficiencies, including iron, vitamin B12, and folate. These deficiencies can contribute to anemia by limiting the availability of essential nutrients required for normal erythropoiesis.HIV infection may lead to increased red blood cell destruction through mechanisms such as hemolysis and autoimmune reactions. The virus can directly or indirectly damage red blood cells, triggering the immune system to attack these cells and accelerate their removal from circulation. 36-45

Role of Erythropoietin in Hematopoiesis

Hematopoiesis, the dynamic process of blood cell formation, is finely regulated to maintain homeostasis. Erythropoietin (EPO), a glycoprotein hormone primarily produced by the kidneys, plays a central role in this intricate orchestration by specifically stimulating the production of red blood cells (RBCs). The kidneys respond to hypoxia by increasing EPO production, which, in turn, enters the bloodstream and targets the bone marrow. The binding of EPO to its receptor on erythroid progenitor cells initiates a cascade of signaling events, leading to enhanced survival, proliferation, and differentiation of these cells. The regulatory feedback loop ensures a delicate balance between oxygen demand and RBC production. Erythropoiesis is a multi-stage involving the differentiation hematopoietic stem cells into mature RBCs. EPO influences erythroid progenitor cells at various stages, promoting the transition from early erythroid precursors to mature RBCs. This process is finely tuned to respond to the body's demand for oxygen and maintain optimal levels. hematocrit The effectiveness of erythropoiesis is not solely dependent on EPO; adequate iron availability is equally crucial. EPO enhances iron uptake in the intestines and its release from storage sites, facilitating its incorporation into developing RBCs. collaboration between EPO and iron metabolism ensures the production of functional hemoglobin, the oxygen-carrying protein within RBCs.46-51

In the context of HIV, the virus exerts a multifaceted impact on hematopoiesis, disrupting the delicate balance orchestrated by EPO. HIVinduced inflammation, cytokine dysregulation, and direct viral effects contribute to impaired erythropoiesis. Additionally, the chronic immune activation and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF- α), interfere with EPO signaling further pathways, exacerbating Understanding the intricacies of EPO's role in hematopoiesis provides a foundation for exploring its therapeutic potential in HIV-related anemia. Exogenous EPO administration aims to restore the disrupted erythropoietic process, enhancing RBC production and ameliorating anemia. However, the success of EPO therapy in HIV-related anemia is contingent upon addressing the multifactorial nature of anemia in this population. 52-61

Efficacy of Erythropoietin in HIV-Related Anemia

Anemia, a common hematological complication in individuals with HIV, poses significant challenges to the overall health and quality of life of affected individuals. In the pursuit of effective interventions, erythropoietin (EPO) has emerged as a potential therapeutic agent to address anemia in the context of HIV. Clinical studies have consistently demonstrated that EPO administration in individuals with HIV-related anemia leads to a significant increase in hemoglobin levels.62-63 The erythropoietic effects of EPO contribute to the replenishment of red blood cells, alleviating the anemic burden and improving oxygen-carrying capacity. hematological responses are particularly notable in patients with concurrent chronic kidney disease, emphasizing the potential benefit of EPO in managing anemia arising from multiple etiologies. Beyond the numerical improvements in hemoglobin levels, the efficacy of EPO in HIVrelated anemia extends to enhancements in the quality of life and functional outcomes. Patients receiving **EPO** therapy have reported improvements in fatigue, exercise tolerance, and overall well-being. These subjective measures underscore the broader impact of EPO on the daily lives of individuals grappling with the dual challenges of HIV and anemia. The efficacy of EPO

is contingent upon optimal dosing strategies, considering factors such as the severity of anemia, comorbid conditions, and individual patient characteristics. Tailoring EPO therapy to the specific needs of the patient ensures a balanced approach that maximizes benefits while minimizing potential risks, such as thromboembolic and events hypertension. Striking this delicate balance is crucial for realizing the full therapeutic potential of EPO in managing anemia in the HIV population.64-73

Safety Profile and Adverse Effects

As erythropoietin (EPO) emerges as a potential therapeutic avenue for managing anemia in individuals with HIV, a critical examination of its safety profile and potential adverse effects becomes imperative. One of the primary safety concerns surrounding EPO therapy in HIV-related anemia is the potential for thromboembolic events. EPO-induced increase in red blood cell mass may contribute to elevated blood viscosity, predisposing individuals to thrombotic events.74 Clinical studies have reported a higher incidence of venous thromboembolism in patients receiving EPO, emphasizing the need for vigilant monitoring, especially in individuals with additional risk factors.75-76 EPO has been associated with an increased risk of hypertension, partly attributed to its impact on blood viscosity and vascular resistance. This adverse effect necessitates close monitoring of blood pressure in individuals undergoing EPO therapy. Adjusting the dose and employing antihypertensive measures may be crucial in mitigating this risk, ensuring that the benefits of EPO in managing anemia are overshadowed cardiovascular not by complications.

The immunomodulatory effects of EPO add a layer of complexity to its safety profile, particularly in the context of HIV. While EPO is primarily recognized for its erythropoietic role, studies suggest that it may exert immunomodulatory effects, influencing the immune response. Given the delicate balance required for immune homeostasis in HIV, understanding the potential impact of EPO on immune function is essential for optimizing therapeutic outcomes. The safety profile of EPO in HIV-related anemia is not

universally homogeneous, and individual patient characteristics play a pivotal role. Factors such as pre-existing cardiovascular conditions, history of thrombotic events, and the stage of HIV infection can influence the overall risk-benefit ratio of EPO therapy. Tailoring treatment plans to individual patient profiles is essential in minimizing adverse effects and optimizing the safety of EPO administration. To enhance the safety of EPO therapy in individuals with HIV-related anemia, robust monitoring strategies are paramount. Regular assessment of hematological parameters, blood pressure, and markers of thrombotic risk allows for early detection of potential adverse effects. Additionally, implementing mitigation such dose strategies, as adjustments, anticoagulant therapy in high-risk individuals, and close collaboration with healthcare providers, ensures a proactive approach to managing EPOassociated risks.77-89

Challenges and Considerations

The potential benefits of erythropoietin (EPO) in managing anemia in individuals with HIV are accompanied by a set of challenges and considerations that warrant careful scrutiny. Determining the optimal dosage of EPO in the context of HIV-related anemia is a complex challenge. Variability in patient response, the heterogeneity of anemia etiologies, and the potential for adverse effects necessitate a nuanced approach. 90 Striking a balance between achieving therapeutic efficacy and minimizing risks, especially concerning thromboembolic events and hypertension, requires meticulous dose titration and individualized treatment plans. Identifying the most suitable candidates for EPO therapy poses another challenge. Factors such as the severity of anemia, underlying comorbidities, and the stage of HIV infection contribute to the complexity of patient selection. Furthermore, the potential immunomodulatory effects of EPO add an additional layer of consideration, requiring a comprehensive assessment of the patient's immune status and overall health. The intersection between EPO and antiretroviral therapy (ART) introduces potential interactions that demand careful consideration. ART regimens, particularly those containing zidovudine, may impact erythropoiesis independently, influencing

the efficacy of EPO. Understanding these interactions is crucial for optimizing treatment outcomes and avoiding unintended consequences, such as exacerbating drug-related toxicities or compromising the virological control of HIV.⁹¹⁻¹⁰⁰

Balancing the potential benefits of EPO therapy against its inherent risks constitutes a critical aspect of clinical decision-making. 101 The risk of thromboembolic events and hypertension, coupled with the uncertainty surrounding longterm safety, requires a meticulous risk-benefit analysis. Clinicians must weigh the advantages of improved hemoglobin levels and quality of life against the potential for adverse effects, tailoring treatment plans to the individual characteristics and needs of each patient. The ethical dimensions of employing EPO in the management of HIVrelated anemia add complexity to its utilization. Ensuring equitable access to EPO therapy, considering the financial implications and potential disparities in healthcare resources, requires a thoughtful and ethical approach. Striving for inclusivity and fairness in the distribution of this therapeutic option is essential to uphold ethical standards in patient care.

Conclusion

The exploration of erythropoietin (EPO) in the management of anemia in individuals with HIV unveils a promising therapeutic avenue, albeit one fraught with complexities and considerations. This comprehensive review has delved into the mechanisms of action, efficacy, safety profile, and challenges associated with the use of EPO in the unique context of HIV-related anemia. The role of EPO in hematopoiesis is a finely tuned symphony, orchestrating the delicate balance of red blood cell production in response to oxygen demand. In the realm of HIV, disruptions to this symphony manifest as anemia, necessitating interventions to restore equilibrium. Exogenous administration of EPO emerges as a rational strategy to counteract these disruptions, stimulating erythropoiesis and elevating hemoglobin levels.

References

- Engelmann L. Mapping AIDS: Visual histories of an enduring epidemic. Cambridge University Press; 2018. doi: https://doi.org/10.1017/978110834895
- 2. Obeagu EI, Obeagu GU, Ukibe NR, Oyebadejo SA. Anemia, iron, and HIV: decoding the interconnected pathways: A review. Medicine. 2024;103(2): e36937. doi:
 - https://doi.org/10.1097%2FMD.000000 0000036937
- Obeagu EI, Obeagu GU. The Role of Blood Transfusion Strategies in HIV Management: Current Insights and Future Directions. Elite Journal of Medicine. 2024;2(1):10-22.
- 4. Meintjes G, Bekker LG, Wood R. Clinical Features and Management of HIV/AIDS in Adults. Manson's Tropical Diseases E-Book. 2023:110. doi: http://dx.doi.org/10.1016/B978-0-7020-7959-7.00015-4
- 5. Obeagu EI, Okoroiwu IL, Obeagu G. Molecular mechanism and systemic response of erythropoietin: A Review. Int. J. Adv. Res. Biol. Sci. 2015;2(7):58-62.
- Obeagu EI, Okoroiwu II, Ezimah AC. Evaluation of serum erythropoietin levels in chronic kidney disease patients in Federal Medical centre, Umuahia, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(4):15-21. doi: http://dx.doi.org/10.13140/RG.2.2.1732
 3.13600
- 7. Obeagu EI. Erythropoeitin in Sickle Cell Anaemia: A Review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-8.
- 8. Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18. http://ijcrcps.com/pdfcopy/mar2016/ijcrcps2.pdf

- 9. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33.
- Obeagu EI, Okwuanaso CB, Edoho SH, Obeagu GU. Under-nutrition among HIV-exposed Uninfected Children: A Review of African Perspective. Madonna University journal of Medicine and Health Sciences. 2022;2(3):120-127.
 https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/85
- 11. Obeagu EI, Alum EU, Obeagu GU. Factors associated with prevalence of HIV among youths: A review of Africa perspective. Madonna University journal of Medicine and Health Sciences. 2023;3(1):13-18. https://madonnauniversity.edu.ng/journ

als/index.php/medicine/article/view/93

- 12. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023;3(1):7-12. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/91
- 13. Obeagu EI, Obeagu GU. An update on premalignant cervical lesions and cervical cancer screening services among HIV positive women. J Pub Health Nutri. 2023; 6 (2). 2023; 141:1-2. links/63e538ed64252375639dd0df/Anupdate-on-premalignant-cervical-lesions-and-cervical-cancer-screening-services-among-HIV-positive-women.pdf
- 14. Ezeoru VC, Enweani IB, Ochiabuto O, Nwachukwu AC, Ogbonna US, Obeagu EI. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 15. Omo-Emmanuel UK, Chinedum OK, Obeagu EI. Evaluation of laboratory logistics management information system in HIV/AIDS comprehensive health

- facilities in Bayelsa State, Nigeria. Int J Curr Res Med Sci. 2017;3(1): 21-38. doi: http://dx.doi.org/10.22192/ijcrms.2017. 03.01.004
- Obeagu EI, Obeagu GU, Musiimenta E, Bot YS, Hassan AO. Factors contributing to low utilization of HIV counseling and testing services. Int. J. Curr. Res. Med. Sci. 2023;9(2): 1-5. Doi: http://dx.doi.org/10.22192/ijcrms.2023.09.02.001
- 17. Pascutti MF, Erkelens MN, Nolte MA. Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Frontiers in immunology. 2016; 7:364. doi: https://doi.org/10.3389/fimmu.2016.00 364
- 18. Obeagu EI, Obeagu GU. An update on survival of people living with HIV in Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;129. https://www.alliedacademies.org/articles/an-update-on-survival-of-people-living-with-hiv-in-nigeria.pdf
- 19. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19. doi: https://doi.org/10.9734/jpri/2021/v33i52B33593
- 20. Obeagu EI, Ogbonna US, Nwachukwu AC, Ochiabuto O, Enweani IB, Ezeoru VC. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19. doi: https://doi.org/10.9734/jpri/2021/v33i431166
- 21. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng UE, Ikpeme M, Bassey JO, Paul

- AO. TB Infection Control in TB/HIV Settings in Cross River State, Nigeria: Policy Vs Practice. Journal of Pharmaceutical Research International. 2020;32(22):101-119. doi: https://doi.org/10.9734/jpri/2020/v32i 2230777
- 22. Obeagu EI, Eze VU, Alaeboh EA, Ochei KC. Determination of haematocrit level and iron profile study among persons living with HIV in Umuahia, Abia State, Nigeria. J BioInnovation. 2016; 5:464-471. https://www.jbino.com/docs/Issue04-01-2016.pdf
- 23. Ifeanyi OE, Obeagu GU. The values of prothrombin time among HIV positive patients in FMC owerri. International Journal of Current Microbiology and Applied Sciences. 2015;4(4):911-916. https://www.ijcmas.com/vol-4-4/Obeagu%20Emmanuel%20Ifeanyi%20 and%20Obeagu,%20Getrude%20Uzoma2.pdf
- 24. Izuchukwu IF, Ozims SJ, Agu GC, Obeagu EI, Onu I, Amah H, Nwosu DC, Nwanjo HU, Edward A, Arunsi MO. Knowledge of preventive measures and management of HIV/AIDS victims among parents in Umuna Orlu community of Imo state Nigeria. Int. J. Adv. Res. Biol. Sci. 2016;3(10): 55-65. doi: https://doi.org/10.22192/ijarbs.2016.03. 10.009
- 25. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75. https://www.iosrjournals.org/iosr-ipbs/papers/Vol12-issue4/Version-4/K1204047075.pdf
- 26. Oloro OH, Oke TO, Obeagu EI. Evaluation of Coagulation Profile Patients with Pulmonary Tuberculosis and Human Immunodeficiency Virus in Owo, Ondo State, Nigeria. Madonna University

- journal of Medicine and Health Sciences. 2022;2(3):110-119.
- https://www.journal.madonnauniversity.edu.ng/index.php/medicine/article/view/82
- 27. Nwosu DC, Obeagu EI, Nkwocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Elendu HN, Ofoedeme CN, Ozims SJ, Nwankpa P. Change in Lipid Peroxidation Marker (MDA) and Non enzymatic Antioxidants (VIT C & E) in HIV Seropositive Children in an Urban Community of Abia State. Nigeria. J. Bio. Innov. 2016;5(1):24-30. https://www.jbino.com/docs/Issue01 03 2016.pdf
- 28. Igwe CM, Obeagu IE, Ogbuabor OA. Clinical characteristics of people living with HIV/AIDS on ART in 2014 at tertiary health institutions in Enugu, Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;130. https://www.alliedacademies.org/articles/clinical-characteristics-of-people-living-with-hivaids-on-art-in-2014-at-tertiary-health-institutions-in-enugu-nigeria-22222.html
- 29. Ifeanyi OE, Obeagu GU, Ijeoma FO, Chioma UI. The values of activated partial thromboplastin time (APTT) among HIV positive patients in FMC Owerri. Int J Curr Res Aca Rev. 2015; 3:139-144. http://www.ijcrar.com/vol-3-4/Obeagu%20Emmanuel%20Ifeanyi3,% 20et%20al.pdf
- 30. Obiomah CF, Obeagu EI, Ochei KC, Swem CA, Amachukwu BO. Hematological indices o HIV seropositive subjects in Nnamdi Azikiwe University teaching hospital (NAUTH), Nnewi. Ann Clin Lab Res. 2018;6(1):1-4. doi: https://doi.org/10.21767/2386-5180.1000221
- 31. Obeagu EI, Obeagu GU, Nchuma BO, Amazue PO. A Review on erythropoietin receptor (EpoR). Int. J. Adv. Res. Biol. Sci. 2015;2(8):80-84.

- https://ijarbs.com/pdfcopy/aug2015/ijarbs11.pdf
- 32. Obeagu EI. Erythrocyte enumeration and serum erythropoietin in chronic kidney disease patients: A study in Federal Medical Centre, Umuahia, Nigeria. International Journal of Advanced Research in Biological Sciences. 2016;3(7):163-170. https://ijarbs.com/pdfcopy/july2016/ija rbs24.pdf
- 33. Ifeanyi OE. A review on erythropoietin. Int J Adv Res Biol Sci. 2015;2(4):35-47.
- 35. Ifeanyi OE, Uzoma OG. A review on erythropietin in pregnancy. J. Gynecol. Womens Health. 2018;8(3):1-4. https://juniperpublishers.com/jgwh/pdf/IGWH.MS.ID.555740.pdf
- 36. Omo-Emmanuel UK, Ochei KC, Osuala EO, Obeagu EI, Onwuasoanya UF. Impact of prevention of mother to child transmission (PMTCT) of HIV on positivity rate in Kafanchan, Nigeria. Int. J. Curr. Res. Med. Sci. 2017;3(2): 28-34. DOI: https://doi.org/10.22192/ijcrms.2017.03
- 37. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Science Reports. 2023;6(8):e1450. Doi: https://doi.org/10.1002%2Fhsr2.1450
- 38. Obeagu EI, Amekpor F, Scott GY. An update of human immunodeficiency virus infection: Bleeding disorders. J Pub Health Nutri. 2023; 6 (1). 2023;139. https://www.alliedacademies.org/articles/an-update-of-human-immunodeficiency-virus-infection-bleeding-disorders.pdf

- 39. Obeagu EI, Scott GY, Amekpor F, Ofodile AC, Edoho SH, Ahamefula C. Prevention of New Cases of Human Immunodeficiency Virus: Pragmatic Approaches of Saving Life in Developing Countries. Madonna University journal of Medicine and Health Sciences. 2022;2(3):128-134. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/86
- 40. Walter O, Anaebo QB, Obeagu EI, Okoroiwu IL. Evaluation of Activated Partial Thromboplastin Time and Prothrombin Time in HIV and TB Patients in Owerri Metropolis. Journal of Pharmaceutical Research International. 2022:29-34. doi: https://doi.org/10.9734/jpri/2022/v34i3A35560
- 41. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng EU, Ikpeme M, Bassey JO, Paul AO. Cascade variabilities in TB case finding among people living with HIV and the use of IPT: assessment in three levels of care in cross River State, Nigeria. Journal of Pharmaceutical Research International. 2020;32(24):9-18. doi: https://doi.org/10.9734/jpri/2020/v32i 2430789
- 42. Jakheng SP, Obeagu EI. Seroprevalence of human immunodeficiency virus based on demographic and risk factors among pregnant women attending clinics in Zaria Metropolis, Nigeria. J Pub Health Nutri. 2022; 5 (8).2022;137. https://www.alliedacademies.org/article s/seroprevalence-of-humanimmunodeficiency-virus-based-ondemographic-and-risk-factors-amongpregnant-women-attending-clinics-inzar-22017.html
- 43. Obeagu EI, Obeagu GU. A Review of knowledge, attitudes and sociodemographic factors associated with non-adherence to antiretroviral therapy among people living with HIV/AIDS. Int. J. Adv. Res. Biol. Sci. 2023;10(9):135-142.

- https://ijarbs.com/pdfcopy/2023/sept20 23/ijarbs15.pdf
- 44. Obeagu EI, Onuoha EC. Tuberculosis among HIV Patients: A review of Prevalence and Associated Factors. Int. J. Adv. Res. Biol. Sci. 2023;10(9):128-134. https://ijarbs.com/pdfcopy/2023/sept2023/jjarbs14.pdf
- 45. Obeagu EI, Ibeh NC, Nwobodo HA, Ochei KC, Iwegbulam CP. Haematological indices of malaria patients coinfected with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2017;3(5):100-104. doi: http://dx.doi.org/10.22192/ijcrms.2017.03.05.014
- 46. Obeagu EI, Okoroiwu IL, Obeagu GU. Relationship between Thrombopoietin and Interleukin 3: A Review. Int J Curr Res Chem Pharm. Sci. 2022;9(1):7-13. https://ijcrcps.com/pdfcopy/2022/jan2022/jicrcps2.pdf
- 47. Obeagu EI, Obeagu GU, Amilo GI. Haematological changes in patients of chronic kidney disease in Umuahia, Abia State, Nigeria. Curr Trends Biomed Eng Biosci. 2018; 11:34-7. Doi: https://juniperpublishers.com/ctbeb/pdf/CTBEB.MS.ID.555805.pdf
- 48. Obeagu EI, Okoroiwu IL, Azuonwu O. An update on hypoxic regulation of iron homeostasis and bone marrow environment. Int. J. Curr. Res. Med. Sci. 2018;4(10):42-8.
- 49. Obeagu EI. Blood Transfusion: A Powerful Process of Saving Anaemic Patients. EC Emergency Medicine and Critical Care. 2020;4(7):33-40.
- 50. Obeagu EI, Obeagu GU. Platelet Distribution Width (PDW) as a Prognostic Marker for Anemia Severity in HIV Patients: A Comprehensive Review. https://journalijiar.com/article/1042/platelet-distribution-width-(pdw)-as-a-prognostic-marker-for-anemia-severity-in-hiv-patients:-a-comprehensive-review/

- 51. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke Emeka-Obi OR, Ugwu OP. Hematologic Support in HIV Patients: Blood Transfusion Strategies and Immunological Considerations. APPLIED SCIENCES (NIJBAS). 2023;3(3). https://nijournals.org/hematologicsupport-in-hiv-patients-bloodtransfusion-strategies-andimmunological-considerations/
- 52. Jakheng SP, Obeagu EI, Abdullahi IO, Jakheng EW, Chukwueze CM, Eze GC, Essien UC, Madekwe CC, Madekwe CC, Vidya S, Kumar S. Distribution Rate of Chlamydial Infection According Demographic Factors among Pregnant Women Attending Clinics in Zaria Metropolis, Kaduna State, Nigeria. South Asian **Iournal** of Research in Microbiology. 2022;13(2):26-31. doi: https://doi.org/10.9734/sajrm/2022/v1 3i230295
- 53. Viola N, Kimono E, Nuruh N, Obeagu EI. Factors Hindering Elimination of Mother to Child Transmission of HIV Service Uptake among HIV Positive Women at Comboni Hospital Kyamuhunga Bushenyi District. Asian Journal of Dental and Health Sciences. 2023;3(2):7-14. Doi: https://doi.org/10.22270/ajdhs.v3i2.39
- 54. Okorie HM, Obeagu Emmanuel I, Okpoli Henry CH, Chukwu Stella N. Comparative study of enzyme linked immunosorbent assay (Elisa) and rapid test screening methods on HIV, Hbsag, Hcv and Syphilis among voluntary donors in. Owerri, Nigeria. J Clin Commun Med. 2020;2(3):180-183.

 https://lupinepublishers.com/clinical-community-
- 55. Ezugwu UM, Onyenekwe CC, Ukibe NR, Ahaneku JE, Onah CE, Obeagu EI, Emeje PI, Awalu JC, Igbokwe GE. Use of ATP, GTP, ADP and AMP as an Index of Energy Utilization and Storage in HIV Infected

medicine/pdf/JCCM.MS.ID.000137.pdf

- Individuals at NAUTH, Nigeria: A Longitudinal, Prospective, Case-Controlled Study. Journal of Pharmaceutical Research International. 2021;33(47A):78-84. doi: https://doi.org/10.9734/jpri/2021/v33i47A32992
- 56. Emannuel G, Martin O, Peter OS, Obeagu EI, Daniel K. Factors Influencing Early Neonatal Adverse Outcomes among Women with HIV with Post Dated Pregnancies Delivering at Kampala International University Teaching Hospital, Uganda. Asian Journal of Pregnancy and Childbirth. 2023 Jul 29;6(1):203-211.

 https://journalajpcb.com/index.php/AJP CB/article/view/113
- 57. Igwe MC, Obeagu EI, Ogbuabor AO, Eze GC, Ikpenwa JN, Eze-Steven PE. Socio-Demographic Variables of People Living with HIV/AIDS Initiated on ART in 2014 at Tertiary Health Institution in Enugu State. Asian Journal of Research in Infectious Diseases. 2022;10(4):1-7. doi: https://doi.org/10.9734/ajrid/2022/v10 i430294
- 58. Vincent CC, Obeagu EI, Agu IS, Ukeagu NC, Onyekachi-Chigbu AC. Adherence to Antiretroviral Therapy among HIV/AIDS in Federal Medical Centre, Owerri. Journal of Pharmaceutical Research International. 2021;33(57A):360-368. doi: https://doi.org/10.9734/jpri/2021/v33i 57A34007
- 59. Igwe MC, Obeagu EI, Ogbuabor AO. OF THE FACTORS AND ANALYSIS **PREDICTORS** OF **ADHERENCE** TO HEALTHCARE OF PEOPLE LIVING WITH HIV/AIDS IN **TERTIARY** HEALTH INSTITUTIONS IN ENUGU STATE. Madonna University journal of Medicine and Health Sciences. 2022;2(3):42-57. http://madonnauniversity.edu.ng/journa ls/index.php/medicine/article/view/75
- 60. Madekwe CC, Madekwe CC, Obeagu EI. Inequality of monitoring in Human

- Immunodeficiency Virus, Tuberculosis and Malaria: A Review. Madonna University journal of Medicine and Health Sciences. 2022;2(3):6-15. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/69
- 61. Echendu GE, Vincent CC, Ibebuike J, Asodike M, Naze N, Chinedu EP, Ohale B, Obeagu EI. WEIGHTS OF INFANTS BORN TO HIV INFECTED MOTHERS: PROSPECTIVE COHORT STUDY FEDERAL MEDICAL CENTRE, OWERRI, STATE. European Journal of Pharmaceutical and Medical Research, 2023;10(8): 564-568: https://storage.googleapis.com/journaluploads/ejpmr/article_issue/169217750 2.pdf
- 62. Saag MS, Bowers P, Leitz GJ, Levine AM. Once-weekly epoetin alfa improves quality of life and increases hemoglobin in anemic HIV+ patients. AIDS Research & Human Retroviruses. 2004;20(10):1037-1045. doi: https://doi.org/10.1089/aid.2004.20.1037
- 63. Redig AJ, Berliner N. Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematology 2013, the American Society of Hematology Education Program Book. 2013;2013(1):377-381. doi: https://doi.org/10.1182/asheducation-2013.1.377
- 64. Nwosu DC, Nwanjo HU, Okolie NJ, Ikeh K, Ajero CM, Dike J, Ojiegbe GC, Oze GO, Obeagu EI, Nnatunanya I, Azuonwu O. BIOCHEMICAL ALTERATIONS IN ADULT HIV PATIENTS ON ANTIRETRQVIRAL THERAPY.World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(3): 153-160.
 - https://www.wjpps.com/Wjpps_controll er/abstract_id/2718
- 65. Obeagu EI, Obeagu GU. Effect of CD4 Counts on Coagulation Parameters among HIV Positive Patients in Federal Medical

- Centre, Owerri, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 2015;2(4):45-49. http://www.ijcrbp.com/vol-2-4/Emmanuel%20I.%200beagu%20and%20Getrude%20U.%200beagu.pdf
- 66. Obeagu EI, Nwosu DC. Adverse drug reactions in HIV/AIDS patients on highly active antiretro viral therapy: a review of prevalence. Int. J. Curr. Res. Chem. Pharm. Sci. 2019;6(12):45-8.DOI: 10.22192/ijcrcps.2019.06.12.004
 links/650aba1582f01628f0335795/Adve rse-drug-reactions-in-HIV-AIDS-patients-on-highly-active-antiretro-viral-therapy-a-review-of-prevalence.pdf
- 67. Obeagu EI, Scott GY, Amekpor F, Obeagu GU. Implications of CD4/CD8 ratios in Human Immunodeficiency Virus infections. Int. J. Curr. Res. Med. Sci. 2023;9(2):6-13.DOI: 10.22192/ijcrms.2023.09.02.002 links/645a4a462edb8e5f094ad37c/Impli cations-of-CD4-CD8-ratios-in-Human-Immunodeficiency-Virus-infections.pdf
- 68. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33.

 links/5711c47508aeebe07c02496b/Asse ssment-of-the-level-of-haemoglobin-and-erythropoietin-in-persons-living-with-HIV-in-Umuahia.pdf
- 69. Ifeanyi OE, Obeagu GU. The Values of CD4
 Count, among HIV Positive Patients in
 FMC Owerri. Int. J. Curr. Microbiol. App.
 Sci. 2015;4(4):906-910.
 https://www.ijcmas.com/vol-44/Obeagu%20Emmanuel%20Ifeanyi%20
 and%20Obeagu,%20Getrude%20Uzoma.
 pdf
- 70. Obeagu EI, Okeke EI, Anonde Andrew C. Evaluation of haemoglobin and iron profile study among persons living with HIV in Umuahia, Abia state, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(2):1-5.

- Alum EU, Ugwu OP, Obeagu EI, Okon MB. Curtailing HIV/AIDS Spread: Impact of Religious Leaders. Newport International Journal of Research in Medical Sciences (NIJRMS). 2023;3(2):28-31.
- 72. Obeagu EI, Obeagu GU, Paul-Chima UO. Stigma Associated With HIV. AIDS: A Review. Newport International Journal of Public Health and Pharmacy (NIJPP). 2023;3(2):64-67.
- 73. Alum EU, Obeagu EI, Ugwu OP, Aja PM, Okon MB. HIV Infection and Cardiovascular diseases: The obnoxious Duos. Newport International Journal of Research in Medical Sciences (NIJRMS). 2023;3(2):95-99.
- 74. Verfaillie CM. Anatomy and physiology of hematopoiesis. Hematology-basic principles and practice. 3rd edn. New York: Churchill Livingstone. 2000.
- 75. Cole KL, Nguyen S, Gelhard S, Hardy J, Cortez J, Nunez JM, Menacho ST, Grandhi R. Factors associated with venous thromboembolism development in patients with traumatic brain injury. Neurocritical Care. 2023:1-9.
- 76. European Association For The Study Of The Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. Journal of hepatology. 2014;60(2):392-420.
- 77. Ibebuike JE, Nwokike GI, Nwosu DC, Obeagu EI. A Retrospective Study on Human Immune Deficiency Virus among Pregnant Women Attending Antenatal Clinic in Imo State University Teaching Hospital. International Journal of Medical Science and Dental Research, 2018; 1 (2):08-14.

https://www.ijmsdr.org/published%20paper/li1i2/A%20Retrospective%20Study%20on%20Human%20Immune%20Deficiency%20Virus%20among%20Pregnant%20Women%20Attending%20Antenatal%20Clinic%20in%20Imo%20State%20University%20Teaching%20Hospital.pdf

- 78. Obeagu EI, Obarezi TN, Omeh YN, Okoro NK, Eze OB. Assessment of some haematological and biochemical parametrs in HIV patients before receiving treatment in Aba, Abia State, Nigeria. Res J Pharma Biol Chem Sci. 2014; 5:825-830.
- 79. Obeagu EI, Obarezi TN, Ogbuabor BN, Anaebo QB, Eze GC. Pattern of total white blood cell and differential count values in HIV positive patients receiving treatment in Federal Teaching Hospital Abakaliki, Ebonyi State, Nigeria. International Journal of Life Science, Biotechnology and Pharama Research. 2014; 391:186-189.
- 80. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023; 3 (1): 7-12.
- 81. Oloro OH, Obeagu EI. A Systematic Review on Some Coagulation Profile in HIV Infection. International Journal of Innovative and Applied Research. 2022;10(5):1-11.
- 82. Nwosu DC, Obeagu EI, Nkwuocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Ezemma MC, Okpomeshine EA, Ozims SJ, Agu GC. Alterations in superoxide dismutiase, vitamins C and E in HIV infected children in Umuahia, Abia state. International Journal of Advanced Research in Biological Sciences. 2015;2(11):268-271.
- 83. Obeagu EI, Malot S, Obeagu GU, Ugwu OP. HIV resistance in patients with Sickle Cell Anaemia. Newport International Journal of Scientific and Experimental Sciences (NIJSES). 2023;3(2):56-59.
- 84. Ifeanyi OE, Uzoma OG, Stella EI, Chinedum OK, Abum SC. Vitamin D and insulin resistance in HIV sero positive individuals in Umudike. Int. J. Curr. Res. Med. Sci. 2018;4(2):104-108.
- 85. Ifeanyi OE, Leticia OI, Nwosu D, Chinedum OK. A Review on blood borne viral

- infections: universal precautions. Int. J. Adv. Res. Biol. Sci. 2018;5(6):60-66.
- 86. Nwovu AI, Ifeanyi OE, Uzoma OG, Nwebonyi NS. Occurrence of Some Blood Borne Viral Infection and Adherence to Universal Precautions among Laboratory Staff in Federal Teaching Hospital Abakaliki Ebonyi State. Arch Blood TransfusDisord. 2018;1(2).
- 87. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Shortcourse centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75.
- 88. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19
- 89. Obeagu EI, Obeagu GU, Ede MO, Odo EO, Buhari HA. Translation of HIV/AIDS knowledge into behavior change among secondary school adolescents in Uganda: A review. Medicine (Baltimore). 2023;102(49): e36599. doi: https://doi.org/10.1097/MD.0000000000000036599
- 90. Herd CL. Evaluating the effects of HIV-1 infection on haematopoietic stem cell colony formation (Doctoral dissertation, University of Pretoria).2019.
- 91. Anyiam AF, Arinze-Anyiam OC, Irondi EA, Obeagu EI. Distribution of ABO and rhesus blood grouping with HIV infection among blood donors in Ekiti State Nigeria. Medicine (Baltimore). 2023;102(47): e36342. doi: https://doi.org/10.1097/MD.00000000000000036342
- 92. Echefu SN, Udosen JE, Akwiwu EC, Akpotuzor JO, Obeagu EI. Effect of Dolutegravir regimen against other regimens on some hematological

- parameters, CD4 count and viral load of people living with HIV infection in South Eastern Nigeria. Medicine (Baltimore). 2023;102(47): e35910. doi: https://doi.org/10.1097/MD.000000000 0035910
- 93. Opeyemi AA, Obeagu EI. Regulations of malaria in children with human immunodeficiency virus infection: A review. Medicine (Baltimore). 2023;102(46): e36166. doi: https://doi.org/10.1097/md.000000000 0036166
- 95. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Sci Rep. 2023;6(8): e1450. doi: https://doi.org/10.1002/hsr2.1450
- 96. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke A0, Emeka-Obi OR. Ugwu OP. Hematologic Support in HIV Patients: Transfusion Strategies Immunological Considerations. APPLIED **SCIENCES** (NIJBAS). 2023;3(3). https://nijournals.org/hematologicsupport-in-hiv-patients-bloodtransfusion-strategies-andimmunological-considerations/
- 97. Obeagu EI, Ubosi NI, Uzoma G. Storms and Struggles: Managing HIV Amid Natural Disasters. Int. J. Curr. Res. Chem. Pharm. Sci. 2023;10(11):14-25. https://ijcrcps.com/pdfcopy/2023/nov2023/ijcrcps2.pdf
- 98. Obeagu EI, Obeagu GU. Human Immunodeficiency Virus and tuberculosis infection: A review of prevalence of

- associated factors. Int. J. Adv. Multidiscip. Res. 2023;10(10):56-62. https://ijarm.com/pdfcopy/2023/oct2023/ijarm5.pdf
- 99. Obeagu EI, Malot S, Obeagu GU, Ugwu OP. HIV resistance in patients with Sickle Cell Anaemia. Newport International Journal of Scientific and Experimental Sciences (NIJSES). 2023;3(2):56-9. https://publications.kiu.ac.ug/publication-page.php?i=hiv-resistance-in-patients-with-sickle-cell-anaemia
- 100. Alum EU, Ugwu OP, Obeagu EI, Aja PM, Okon MB, Uti DE. Reducing HIV

- Infection Rate in Women: A Catalyst to reducing HIV Infection pervasiveness in Africa. International Journal of Innovative and Applied Research. 2023;11(10):01-6. https://www.journalijiar.com/uploads/2 03 IIIAR-2534.pdf
- 101. Agarwal R. Individualizing decision-making—resurrecting the doctor-patient relationship in the anemia debate. Clinical Journal of the American Society of Nephrology. 2010;5(7):1340-1346. doi: https://doi.org/10.2215/cjn.02830310

How to cite this Article: Obeagu. E. I, Obeagu. G. U; Erythropoietin in the Management of Anemia in

HIV: A Review; Int. Res. Med. Health Sci., 2023; (6-6): 36-48; doi:

https://doi.org/10.36437/irmhs.2023.6.6.D

Source of Support: Nil, **Conflict of Interest:** None declared. **Received:** 18-1-2024; **Revision:** 21-3-2024; **Accepted:** 25-3-2024