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ABSTRACT 
Botox injections are a popular, non-invasive treatment in facial aesthetics, used to reduce wrinkles and 

achieve a youthful appearance. Accurate evaluation of Botox’s efficacy is essential in clinical settings, yet it is 

often subject to subjective interpretation. This study presents an automated, objective approach for 

classifying pre- and post-Botox facial images using advanced deep-learning models, including MobileNet, 

ResNet50, and InceptionV3. The models were trained on a diverse dataset of facial images, achieving high 

performance in classifying treatment outcomes. InceptionV3 demonstrated the highest accuracy (89.27%), 

precision (91.15%), and recall (92.27%), with statistically significant differences across models (p < 0.05) for 

all metrics. While InceptionV3 and ResNet50 excelled in accuracy and recall, MobileNet offered a 

computationally efficient option suited for real-time applications. 
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Introduction

Plastic surgery has become a cornerstone in the 

pursuit of aesthetic improvement and medical 

reconstruction, significantly impacting the field of 

facial aesthetics.1 Among the most popular and 

widely adopted procedures within this discipline 

is the administration of botulinum toxin, 

commonly known as Botox.2,3 This non-invasive 

intervention is designed to target dynamic 

wrinkles, particularly those caused by repetitive 

facial muscle movements, such as frown lines, 

crow’s feet, and forehead creases. Botox 

injections temporarily relax these muscles by 

blocking nerve signals, resulting in smoother skin 

and a more youthful appearance without the need 

for surgical intervention. This minimally invasive 

approach has gained widespread appeal due to its 

relatively low recovery time, quick results, and 

the flexibility to complement other aesthetic 

procedures, such as dermal fillers.4 Beyond 

aesthetics, Botox is also used for various 

therapeutic applications, including treatment for 

chronic migraines, excessive sweating, and 

muscle disorders, further underscoring its value 

in both cosmetic and medical domains. In the 

context of facial plastic surgery, Botox offers a 

dual benefit: it serves not only as a highly 

effective tool for age-related cosmetic 

improvements but also plays a vital role in 

helping individuals restore confidence and 

emotional well-being. As the demand for non-

surgical aesthetic solutions rises globally, the 

importance of accurate evaluation and 

assessment of Botox efficacy becomes even more 

critical.5
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Figure 1: Some samples of the images before and after Botox.6 

Artificial Intelligence (AI) has revolutionized 

multiple industries, with healthcare being one of 

the most profoundly impacted. Within healthcare, 

machine learning (ML) and its subset, deep 

learning (DL), have led to transformative 

advances in areas such as diagnostic imaging, 

predictive analytics, and personalized medicine.7-

14 Deep learning, in particular, has proven 

uniquely suited to medical applications due to its 

ability to analyze large volumes of complex data, 

including medical images, with a high degree of 

precision. These deep learning algorithms, 

especially convolutional neural networks (CNNs), 

are capable of identifying intricate patterns 

within images that may be challenging or time-

consuming for human experts to discern. By 

automating processes that traditionally require 

expert judgment, AI-based tools can assist 

clinicians in making faster, more accurate 

decisions, ultimately enhancing patient outcomes. 

In radiology, for example, deep learning has 

improved the early detection of various diseases 

by analyzing CT scans, MRIs, and X-rays.15-18 

Beyond diagnostics, AI’s predictive capabilities 

are instrumental in fields like oncology, where 

machine learning models help estimate treatment 

responses or potential recurrence. This fusion of 

AI and medical practice marks a new era in 

healthcare, where deep learning technologies 

offer a pathway toward scalable, cost-effective 

solutions and are increasingly integrated into 

clinical environments. 

 

The integration of deep learning into plastic and 

reconstructive surgery holds transformative 

potential, particularly for procedures that rely on 

image-based assessments, such as Botox and 

other facial aesthetic treatments.19-23 Through 

advanced computer vision techniques, deep 

learning enables the objective analysis of facial 

images, allowing for a quantifiable assessment of 

changes in skin texture, muscle relaxation, and 

wrinkle reduction after Botox injections.24-28 This 

capability is particularly beneficial for plastic 

surgeons seeking to measure treatment efficacy, 

track patient progress, and adjust treatment plans 

based on individualized results. Deep learning 

algorithms can analyze pre- and post-procedural 

images to automatically identify and classify 

subtle changes in facial morphology that may not 

be readily apparent to the naked eye. In addition, 

these models support consistency in treatment 

evaluations, thereby reducing subjectivity and 

variability in aesthetic outcome assessments. This 

technological enhancement allows surgeons to 

offer patients a more data-driven, personalized 

approach to facial rejuvenation. Furthermore, AI-

driven models in plastic surgery can advance 
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research by providing a foundation for studying 

the long-term effects of aesthetic treatments, thus 

contributing valuable insights into optimizing 

procedural techniques. As the field of aesthetic 

medicine continues to evolve, the incorporation 

of deep learning for objective, automated 

assessments marks a significant advancement in 

enhancing both surgical precision and patient 

satisfaction. 

 

The main focus of this paper is the application of 

advanced deep learning models to classify pre- 

and post-Botox facial images, providing an 

automated and objective method for assessing the 

effects of Botox injections. Specifically, we employ 

state-of-the-art convolutional neural network 

(CNN) architectures, including MobileNet, ResNet, 

and Inception, each known for its unique ability 

to capture detailed features in images with high 

accuracy. 

 

Methods and Materials 

This paper primarily focuses on utilizing 

advanced deep learning models to distinguish 

between pre- and post-Botox facial images, 

offering an automated and objective approach to 

evaluating Botox treatment outcomes. MobileNet 

offers efficient performance for mobile and 

embedded applications, making it ideal for 

deployment in real-time clinical environments, 

while ResNet’s residual connections allow for 

deep feature extraction, enhancing accuracy in 

distinguishing subtle facial changes. Inception, 

with its inception modules, provides a multi-scale 

approach to feature extraction, enabling it to 

capture both fine and coarse facial details, 

essential for identifying the nuanced effects of 

Botox on muscle relaxation and wrinkle 

reduction. By leveraging these advanced models, 

our approach aims to deliver a highly accurate 

classification between pre- and post-Botox faces, 

thereby supporting plastic surgeons with reliable, 

data-driven insights. 

 

The ability to automatically and accurately 

classify facial changes post-botox is of 

considerable importance in plastic and facial 

aesthetic surgery. Traditionally, assessing the 

success of Botox treatments has been largely 

subjective, relying on both patient self-

assessment and surgeon judgment, which can 

introduce variability and bias. An automated deep 

learning-based approach provides an objective 

framework for quantifying the effects of Botox, 

offering standardized evaluations that contribute 

to more consistent and reproducible results. 

Additionally, these models enable surgeons to 

better understand the varying effects of Botox 

across different patient demographics, such as 

age, skin type, and facial anatomy, which are 

crucial for tailoring treatments. By enhancing the 

accuracy and reliability of Botox efficacy 

assessments, this work not only supports 

surgeons in achieving optimal aesthetic outcomes 

but also paves the way for more personalized and 

data-driven approaches in facial rejuvenation 

practices. 

 

Inception 

The Inception model, also known as GoogLeNet, 

incorporates a unique architecture that allows for 

multi-scale feature extraction, a capability that is 

critical for analyzing diverse facial structures and 

the varying effects of Botox. The inception 

modules within this architecture apply 

convolutions at multiple filter sizes (1x1, 3x3, and 

5x5) simultaneously, capturing features at 

different scales within the same layer. This 

approach enables the model to analyze both fine 

and broad facial features, making it exceptionally 

suited for tasks involving complex facial changes. 

For Botox assessment, Inception’s multi-scale 

processing is advantageous in capturing a 

comprehensive range of facial transformations, 

such as localized skin smoothness and broad 

muscle relaxation across different facial regions. 

This model’s depth and flexibility make it 

particularly adept at assessing the individualized 

effects of Botox on diverse faces, supporting the 

objective evaluation of treatment success across a 

variety of skin types, ages, and facial anatomies. 

By utilizing inception modules, the model can 

balance detailed and generalized feature 

extraction, thereby enhancing the model’s 

capacity to provide a holistic and detailed 
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assessment of Botox effects in plastic surgery 

applications. 

 

MobileNet 

MobileNet is a convolutional neural network 

architecture optimized for speed and 

computational efficiency, making it particularly 

suitable for applications requiring real-time 

image analysis, such as clinical assessments of 

Botox treatments. This model achieves efficiency 

by utilizing depthwise separable convolutions, 

which split the convolution operation into two 

steps: depthwise convolution for spatial filtering 

and pointwise convolution for combining 

channels. This design drastically reduces the 

number of parameters and computational cost 

compared to traditional CNNs, while still 

maintaining a high level of accuracy. In our study, 

MobileNet’s lightweight architecture enables it to 

detect subtle facial changes post-Botox with 

minimal latency, making it ideal for mobile or 

embedded deployment where resources are 

limited.

 

 

 
Figure 2: ResNet (a) vs MobileNet (b). 

Additionally, the model’s efficiency in processing 

large datasets allows it to scale effectively, 

supporting widespread adoption in clinical 

settings. By identifying features such as slight 

changes in skin smoothness or muscle relaxation, 

MobileNet provides a rapid, real-time 

classification of pre- and post-Botox images, 

which can be valuable for on-site evaluations and 

consultations in plastic surgery clinics. 

ResNet 

ResNet, or Residual Network, is a deep CNN 

architecture designed to overcome the challenges 

of training very deep networks, such as the 

vanishing gradient problem, through its unique 
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use of residual connections. These residual 

connections allow information to bypass certain 

layers, ensuring that critical details are preserved 

and enhancing the network’s ability to capture 

complex patterns in the data. For our application, 

ResNet’s architecture is ideal for distinguishing 

the nuanced effects of Botox, as it enables the 

model to capture deep and layered 

representations of facial features. With its 

multiple stacked layers, ResNet can identify 

intricate details, such as fine changes in muscle 

definition or wrinkle reduction, by learning 

feature hierarchies at different depths. This 

characteristic is particularly beneficial for Botox 

classification, as it allows the model to identify 

subtle variations that are not easily noticeable at 

shallow layers. ResNet’s architecture also 

provides robustness against overfitting, which is 

essential for achieving generalizable results 

across diverse face types and demographic 

groups in Botox evaluations, ensuring high 

accuracy and reliability in real-world clinical 

applications. 

 

Figure 2 illustrates the architectural differences 

between a ResNet block (on the left, labeled as 

(a)) and a MobileNetV2 block (on the right, 

labeled as (b)), highlighting how each processes 

input through specific layers, utilizing concepts 

such as "Expand," "Shrink," and "Shortcut" 

connections. 

 

In the ResNet block (a), the input first goes 

through a 1x1 convolution layer labeled as 

"Shrink," which reduces the dimensionality of the 

input (often called a bottleneck layer) to make the 

computation more efficient. This layer is followed 

by a ReLU activation function to introduce non-

linearity. The next layer is a 3x3 convolution, 

which performs spatial feature extraction and is 

also followed by a ReLU activation. Finally, the 

output is processed through another 1x1 

convolution layer, labeled as "Expand," which 

restores the dimensionality. After this series of 

transformations, the processed features are 

added to the original input using a "Shortcut" 

connection, which bypasses the convolutional 

layers, allowing the model to retain the original 

information while adding learned 

transformations. This shortcut connection, a 

defining feature of ResNet, helps alleviate the 

vanishing gradient problem, enabling effective 

training of very deep networks. In contrast, the 

MobileNetV2 block (b) begins with an "Expand" 

layer, a 1x1 convolution that increases the 

dimensionality of the input to capture more 

features, followed by a ReLU6 activation function, 

which is a variant of ReLU that clips activations at 

6 to enhance stability in mobile and embedded 

applications. After expansion, the input passes 

through a "Dwise 3x3" layer, which stands for a 

depthwise separable 3x3 convolution. This layer 

performs spatial filtering independently on each 

channel, significantly reducing computational 

cost while retaining important features. 

Following this, the block applies a "Shrink" 1x1 

convolution layer, reducing the dimensionality 

back to the original input size. As with ResNet, the 

MobileNetV2 block employs a shortcut 

connection that adds the original input to the 

processed output. This structure, known as an 

inverted residual, is essential for MobileNetV2, as 

it allows the network to efficiently capture 

features while keeping the model lightweight and 

computationally efficient, making it well-suited 

for mobile and embedded devices. 

 

Experiments 

Dataset 

The dataset used in this study consists of facial 

images captured before and after Botox 

injections, providing a basis for evaluating 

changes in facial features post-treatment. Each 

individual in the dataset is represented by two 

images: one taken before receiving Botox 

injections and another taken afterward. The 

dataset includes a diverse sample of individuals, 

varying in age, gender, skin type, and ethnicity, 

allowing the model to learn a broad range of facial 

characteristics and Botox-induced changes. This 

diversity ensures that the model generalizes well 

across different demographic groups, making it 

more applicable in real-world clinical scenarios.6 

To support accurate classification, images were 

preprocessed to ensure consistency in alignment 

and scaling. Standard preprocessing techniques, 



Rahmani. A et al; Automated Classification of Before-and-After Botox Faces Using Advanced    www.irmhs.com 

International Research in Medical and Health Sciences | Vol. 7 | Issue 5 | Sep-October | 2024                                        Page 80 
 

such as facial alignment, normalization, and 

cropping to a fixed size, were applied to 

standardize each face, reducing variability due to 

factors like lighting, orientation, or background. 

These steps help the deep learning models focus 

on relevant facial features altered by Botox rather 

than being distracted by external noise. 

Additionally, augmentation techniques, such as 

horizontal flipping, random cropping, and color 

jittering, were applied to expand the dataset 

artificially, further enhancing the model’s 

robustness. This dataset is unique in that it allows 

the deep learning models to analyze subtle, 

localized changes in facial features, such as 

wrinkle reduction, muscle relaxation, and skin 

texture alterations, resulting from Botox 

injections. These changes can be challenging to 

quantify manually, making the dataset a valuable 

asset for automated aesthetic evaluations. 

Furthermore, the dataset’s diversity in skin types 

and facial structures allows the model to evaluate 

Botox's effectiveness more comprehensively, 

supporting applications in both clinical 

assessments and patient consultations in the field 

of plastic surgery. 

 

Training 

Each of these models—MobileNet, ResNet, and 

Inception—was trained using a comprehensive 

dataset of labeled before-and-after Botox facial 

images. The training process leveraged standard 

deep learning techniques to ensure robust model 

performance and convergence. For each model, 

the primary optimization technique used was 

backpropagation with a cross-entropy loss 

function, which is well-suited for binary 

classification tasks. This loss function measures 

the difference between the predicted 

probabilities and the true labels, allowing the 

model to adjust its weights to minimize 

misclassifications effectively. Optimization during 

training was achieved through stochastic gradient 

descent (SGD) with momentum. The momentum 

term helps accelerate gradient vectors in the 

correct direction, preventing oscillations and 

allowing the model to converge faster and more 

reliably. By using SGD with momentum, the 

models can avoid common pitfalls in training, 

such as getting stuck in a local minimum, and 

achieve more stable performance across epochs. 

The learning rate was initially set to a moderate 

value and then decayed over time to facilitate 

fine-tuning in later stages of training, allowing the 

models to learn both coarse and fine facial 

features relevant to Botox-induced changes. 

During the training process, various data 

augmentation techniques, such as random 

cropping, rotation, horizontal flipping, and color 

jittering, were employed. These augmentations 

helped to artificially expand the dataset, reducing 

overfitting and enhancing the model's ability to 

generalize to unseen images. Furthermore, batch 

normalization was applied after each 

convolutional layer to stabilize the learning 

process by normalizing the input for each layer, 

which accelerates convergence and helps in 

achieving consistent results. Each model was 

trained over multiple epochs, with early stopping 

criteria applied to prevent overfitting. This 

involved monitoring the validation accuracy and 

halting training if there was no significant 

improvement for a set number of epochs. 

Additionally, model checkpoints were saved at 

regular intervals to capture the best-performing 

weights, ensuring that the model with the highest 

validation accuracy was used for testing. Through 

this meticulous training process, the models 

learned to recognize subtle facial changes 

resulting from Botox injections, achieving a high 

level of accuracy in distinguishing between pre-

and post-treatment images. 

 

Additionally, to further ensure the robustness and 

generalizability of the models, we implemented 5-

fold cross-validation during the training process. 

In this approach, the dataset was divided into five 

equal subsets, or "folds." For each iteration, one 

fold was used as the validation set while the 

remaining four folds served as the training set. 

This process was repeated five times, with each 

fold serving as the validation set once, allowing 

the model to be evaluated across all portions of 

the dataset. By averaging the performance 

metrics across the folds, we obtained a 

comprehensive assessment of the model's 

effectiveness, reducing the risk of overfitting any 
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single subset of data. This cross-validation 

strategy provided valuable insights into the 

consistency and stability of each model’s 

performance. It also allowed us to identify and 

mitigate potential issues with data variability, as 

each model was exposed to a wide range of 

before-and-after Botox images across all folds. 

Through 5-fold cross-validation, we ensured that 

the final model parameters were optimized not 

only for the training data but also for a broader 

application in real-world scenarios, improving 

reliability and generalization. 

 

Metrics 

To evaluate the effectiveness of our deep learning 

models in classifying pre- and post-Botox facial 

images, we used three key performance metrics: 

accuracy, precision, and recall. These metrics 

were chosen to provide a comprehensive 

assessment of each model’s performance, 

addressing both overall classification accuracy 

and the model’s ability to correctly identify each 

class (pre- or post-Botox) without bias. 

 

Accuracy measures the overall correctness of the 

model’s predictions by calculating the ratio of 

correct predictions (both pre-and post-Botox) to 

the total number of predictions. This metric 

provides a general sense of the model’s 

effectiveness; however, it may not fully capture 

model performance in cases where one class is 

more prevalent than the other. For our 

application, accuracy is a useful indicator of 

general model performance but is complemented 

by other metrics to ensure a balanced evaluation. 

Precision specifically assesses the model’s ability 

to correctly identify post-Botox images by 

calculating the ratio of true positive predictions 

(correctly classified post-Botox images) to the 

sum of true positives and false positives. High 

precision indicates that the model is adept at 

avoiding false positives, which is crucial in clinical 

settings, where mistakenly classifying a pre-Botox 

image as post-Botox could lead to incorrect 

assessments of treatment effectiveness. Recall (or 

sensitivity) measures the model’s ability to 

correctly identify all relevant instances of the 

post-Botox class by calculating the ratio of true 

positives to the sum of true positives and false 

negatives. High recall indicates that the model is 

capable of identifying most, if not all, post-Botox 

images, minimizing the risk of overlooking actual 

post-treatment results. In the context of 

evaluating Botox efficacy, a high recall is 

important for ensuring that all significant facial 

changes due to Botox are correctly identified. 

 

 

Table 1. Classification performance of the different models. 

Results 

The classification performance of the different 

deep learning models—MobileNet, ResNet50, and 

InceptionV3—was evaluated based on accuracy, 

precision, and recall, as shown in Table 1. Each 

model demonstrated high effectiveness in 

distinguishing between pre- and post-Botox facial 

images, with notable differences in performance 

across metrics. 

 

MobileNet achieved an accuracy of 85.27% 

(±0.0031), a precision of 84.51% (±0.0029), and a 

recall of 81.6% (±0.0047). While MobileNet 

performed well, its slightly lower recall compared 

to the other models indicates a minor tendency to 

miss some post-Botox images, resulting in a small 

percentage of false negatives. However, 

MobileNet’s lightweight architecture and efficient 

computation make it suitable for real-time 

applications, especially in settings where 

computational resources are limited, despite its 

slightly lower recall. ResNet50 showed a 

significant improvement in performance, with an 

accuracy of 88.07% (±0.0062), a precision of 

89.18% (±0.0038), and a recall of 88.29% 

(±0.0057). This model’s higher precision and 

Model Accuracy Precision Recall 
MobileNet 85.27±0.0031 84.51±0.0029 81.6±0.0047 
ResNet50 88.07±0.0062 89.18±0.0038 88.29±0.0057 

InceptionV3 89.27±0.0049 91.15±0.0077 92.27±0.0038 
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recall indicate that it is better at accurately 

identifying both pre- and post-Botox images, with 

minimal false positives and false negatives. The 

residual connections in ResNet50 contributed to 

this increased performance by enabling deeper 

feature extraction and improved training stability, 

allowing it to capture subtle differences in facial 

features more effectively. InceptionV3 delivered 

the highest performance among the three models, 

achieving an accuracy of 89.27% (±0.0049), a 

precision of 91.15% (±0.0077), and a recall of 

92.27% (±0.0038). The model’s multi-scale 

feature extraction capabilities, provided by the 

inception modules, appear to have enabled it to 

capture a broader range of facial details, such as 

fine changes in muscle relaxation and skin texture 

post-Botox. InceptionV3’s superior recall, in 

particular, highlights its ability to detect nearly all 

post-Botox images, ensuring that very few true 

positives are missed, making it especially 

valuable in applications where comprehensive 

identification of treatment effects is critical. 

 

In summary, while all models demonstrated high 

classification performance, InceptionV3 achieved 

the best overall accuracy, precision, and recall, 

indicating its effectiveness in identifying Botox-

induced facial changes across diverse individuals. 

ResNet50 also provided robust performance, with 

slightly lower scores than InceptionV3 but 

greater efficiency than MobileNet. These results 

suggest that both InceptionV3 and ResNet50 are 

strong candidates for clinical settings where 

precision in Botox outcome assessment is 

essential, whereas MobileNet offers a practical 

balance between accuracy and computational 

efficiency for applications that prioritize speed 

and resource limitations. 

 

Statistical Analysis 

To determine if there are statistically significant 

differences in classification performance among 

the models, we can conduct statistical tests on 

each metric (accuracy, precision, and recall) 

across the models. The ANOVA test conducted on 

the performance metrics of accuracy, precision, 

and recall revealed significant differences 

between the models—MobileNet, ResNet50, and 

InceptionV3—when classifying pre- and post-

Botox facial images. For accuracy, the p-value was 

0.036, indicating a statistically significant 

difference among the models. This suggests that 

at least one model achieved a level of accuracy 

that is distinct from the others, highlighting 

potential differences in the models’ overall 

effectiveness. For precision, the p-value was even 

lower at 0.011, underscoring significant variation 

in the models’ ability to correctly identify post-

Botox images with minimal false positives. 

Finally, the recall metric also showed a significant 

difference, with a p-value of 0.0096, indicating 

that the models vary in their ability to capture 

true positives, ensuring minimally missed 

classifications of post-Botox images. These p-

values confirm that InceptionV3, ResNet50, and 

MobileNet differ in their performance on each 

metric, supporting the selection of the highest-

performing model for clinical applications. 

 

Conclusion 

In this study, we developed and evaluated 

advanced deep learning models—MobileNet, 

ResNet50, and InceptionV3—to classify facial 

images captured before and after Botox injections. 

The results demonstrate that each model achieved 

high accuracy, precision, and recall, with 

InceptionV3 performing best overall, closely 

followed by ResNet50. MobileNet, while slightly 

lower in classification metrics, remains an 

efficient option for applications requiring lower 

computational resources, making it suitable for 

real-time or mobile-based implementations. 

Statistical analysis further confirmed significant 

differences between the models’ performance, 

underscoring InceptionV3’s superior ability to 

capture and classify Botox-induced changes in 

diverse facial features. This classification 

capability is valuable in clinical plastic surgery, 

where objective, consistent assessment of 

aesthetic treatments is critical for outcome 

evaluation and patient satisfaction. By automating 

the evaluation process, our models provide a 

reliable tool for clinicians, reducing subjectivity 

and enhancing the standardization of Botox 

efficacy assessments. 
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