A Narrative Review: Dental Radiology with Deep Learning

  • Shima Minoo D.D.S., Department of Dentistry, Isfahan Azad University, Isfahan, Iran.
  • Fariba Ghasemi Islamic Azad University, Tehran, Iran.
Keywords: Caries Detection, Convolutional Neural Networks (CNNs), Dental Radiology, Image Segmentation, X-Ray

Abstract

In this paper, we explore the transformative potential of deep learning in dental radiology, focusing on its applications in disease detection, image segmentation, and treatment planning. By utilizing convolutional neural networks (CNNs), deep learning models have demonstrated remarkable success in diagnosing dental conditions such as caries, periodontal disease, and oral cancer from radiographs and cone-beam computed tomography (CBCT) scans. Additionally, we highlight the role of deep learning in automating the segmentation of dental structures and improving accuracy in procedures such as implant placement and orthodontic evaluations. However, this paper also addresses key challenges, including the limited availability of large, annotated datasets, the black-box nature of deep learning models, and the need for generalizability across diverse clinical settings. Ethical considerations, including data privacy and model bias, are also discussed. Finally, we outline future directions for the field, such as the integration of deep learning with advanced imaging technologies, the adoption of federated learning for collaborative model development, and the advancement of explainable AI to improve model interpretability. Through these developments, deep learning has the potential to revolutionize dental radiology, offering more precise diagnoses, personalized treatment plans, and ultimately, better patient outcomes.

References

Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World journal of radiology. 2014 Oct 10;6(10):794. doi: https://doi.org/10.4329/wjr.v6.i10.794

Vandenberghe B. The digital patient–Imaging science in dentistry. Journal of dentistry. 2018 Jul 1;74:S21-6. doi: https://doi.org/10.1016/j.jdent.2018.04.019

Tashakkori A, Talebzadeh M, Salboukh F, Deshmukh L. Forecasting Gold Prices with MLP Neural Networks: A Machine Learning Approach. International Journal of Science and Engineering Applications (IJSEA). 2024; 13:13-20. doi: http://dx.doi.org/10.7753/IJSEA1308.1003

Chen H, Kim S, Hardie JM, Thirumalaraju P, Gharpure S, Rostamian S, Udayakumar S, Lei Q, Cho G, Kanakasabapathy MK, Shafiee H. Deep learning-assisted sensitive detection of fentanyl using a bubbling-microchip. Lab on a Chip. 2022;22(23):4531-40. doi: https://doi.org/10.1039/D2LC00478J

Galić D, Stojanović Z, Čajić E. Application of Neural Networks and Machine Learning in Image Recognition. Tehnički vjesnik. 2024;31(1):316-23. doi: https://doi.org/10.17559/TV-20230621000751

Mendonça MO, Netto SL, Diniz PS, Theodoridis S. Machine learning: Review and trends. Signal Processing and Machine Learning Theory. 2024 Jan 1:869-959.

Tiwari P, Upadhyay D, Pant B, Mohd N. Multiclass classification of disease using CNN and SVM of medical imaging. In International Conference on Advances in Computing and Data Sciences 2022 Apr 22 (pp. 88-99). Cham: Springer International Publishing. doi: http://dx.doi.org/10.1007/978-3-031-12641-3_8

Ramteke RJ, Monali KY. Automatic medical image classification and abnormality detection using k-nearest neighbour. International Journal of Advanced Computer Research. 2012 Dec 1;2(4):190.

Kumar R, Kumbharkar P, Vanam S, Sharma S. Medical images classification using deep learning: a survey. Multimedia Tools and Applications. 2024 Feb;83(7):19683-728.

Nafissi N, Heiranizadeh N, Shirinzadeh-Dastgiri A, Vakili-Ojarood M, Naseri A, Danaei M, Saberi A, Aghasipour M, Shiri A, Yeganegi M, Rahmani A. The Application of Artificial Intelligence in Breast Cancer. EJMO. 2024;8(3):235-44. doi: http://dx.doi.org/10.14744/ejmo.2024.45903

Zhang Y, Liu S, Li C, Wang J. Application of deep learning method on ischemic stroke lesion segmentation. Journal of Shanghai Jiaotong University (Science). 2022:1-3. doi: https://doi.org/10.1007/s12204-021-2273-9

Akhoondinasab M, Shafaei Y, Rahmani A, Keshavarz H. A Machine Learning-Based Model for Breast Volume Prediction Using Preoperative Anthropometric Measurements. Aesthetic Plastic Surgery. 2024 Feb;48(3):243-9. doi: https://doi.org/10.1007/s00266-022-02937-0

Afrazeh F, Shomalzadeh M. Revolutionizing Arthritis Care with Artificial Intelligence: A Comprehensive Review of Diagnostic, Prognostic, and Treatment Innovations. International Journal of Applied Data Science in Engineering and Health. 2024 Sep 10;1(2):7-17. https://ijadseh.com/index.php/ijadseh/article/view/8/8

Mahmoudiandehkordi S, Yeganegi M, Shomalzadeh M, Ghasemi Y, Kalatehjari M. Enhancing IVF Success: Deep Learning for Accurate Day 3 and Day 5 Embryo Detection from Microscopic Images. International Journal of Applied Data Science in Engineering and Health. 2024 Aug 14;1(1):18-25. https://ijadseh.com/index.php/ijadseh/article/view/5/ijadseh

Abbasi H, Afrazeh F, Ghasemi Y, Ghasemi F. A Shallow Review of Artificial Intelligence Applications in Brain Disease: Stroke, Alzheimer's, and Aneurysm. International Journal of Applied Data Science in Engineering and Health. 2024 Oct 5;1(2):32-43. https://ijadseh.com/index.php/ijadseh/article/view/12/13

Liu C, Dong Y, Xiang W, Yang X, Su H, Zhu J, Chen Y, He Y, Xue H, Zheng S. A comprehensive study on robustness of image classification models: Benchmarking and rethinking. International Journal of Computer Vision. 2024 Aug 9:1-23. doi: https://doi.org/10.48550/arXiv.2302.14301

Zadeh SS, Khorshidi M, Kooban F. Concrete Surface Crack Detection with Convolutional-based Deep Learning Models. arXiv preprint arXiv:2401.07124. 2024 Jan 13. doi: https://doi.org/10.48550/arXiv.2401.07124

Orouskhani M, Zhu C, Rostamian S, Zadeh FS, Shafiei M, Orouskhani Y. Alzheimer's disease detection from structural MRI using conditional deep triplet network. Neuroscience Informatics. 2022 Dec 1;2(4):100066. doi: http://dx.doi.org/10.1016/j.neuri.2022.100066

Li J, Cai Y, Li Q, Kou M, Zhang T. A review of remote sensing image segmentation by deep learning methods. International Journal of Digital Earth. 2024 Dec 31;17(1):2328827. doi: https://doi.org/10.1080/17538947.2024.2328827

Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence. 2021 Feb 17;44(7):3523-42. doi: https://doi.org/10.1109/TPAMI.2021.3059968

Pérez de Frutos J, Holden Helland R, Desai S, Nymoen LC, Langø T, Remman T, Sen A. AI-Dentify: deep learning for proximal caries detection on bitewing x-ray-HUNT4 Oral Health Study. BMC Oral Health. 2024 Mar 18;24(1):344. doi: https://doi.org/10.1186/s12903-024-04120-0

Moharrami M, Farmer J, Singhal S, Watson E, Glogauer M, Johnson AE, Schwendicke F, Quinonez C. Detecting dental caries on oral photographs using artificial intelligence: A systematic review. Oral Diseases. 2024 May;30(4):1765-83. doi: https://doi.org/10.1111/odi.14659

Alsaffar A. Accuracy of Rule-Based Algorithm and Deep-Learning Platform in Diagnosis of Periodontal Disease (Master's thesis, The University of Texas School of Dentistry at Houston).

Jundaeng J, Nithikathkul C, Chamchong R. Periodontitis diagnosis: a review of current and future trends in artificial intelligence. Technol Health Care. 2024. doi: https://doi.org/10.3233/thc-241169

Dutta C, Sandhya P, Vidhya K, Rajalakshmi R, Ramya D, Madhubabu K. Effectiveness of deep learning in early‐stage oral cancer detections and classification using histogram of oriented gradients. Expert Systems. 2024 Jun;41(6):e13439. doi: https://doi.org/10.1111/exsy.13439

Kumar KV, Palakurthy S, Balijadaddanala SH, Pappula SR, Lavudya AK. Early Detection and Diagnosis of Oral Cancer Using Deep Neural Network. Journal of Computer Allied Intelligence (JCAI, ISSN: 2584-2676). 2024 Apr 30;2(2):22-34. doi: https://doi.org/10.69996/jcai.2024008

Shiwlani A, Ahmad A, Umar M, Dharejo N, Tahir A, Shiwlani S. BI-RADS Category Prediction from Mammography Images and Mammography Radiology Reports Using Deep Learning: A Systematic Review. Jurnal Ilmiah Computer Science. 2024 Jul 15;3(1):30-49. doi: https://doi.org/10.58602/jics.v3i1.31

Yasaka K, Sato C, Hirakawa H, Fujita N, Kurokawa M, Watanabe Y, Kubo T, Abe O. Impact of deep learning on radiologists and radiology residents in detecting breast cancer on CT: a cross-vendor test study. Clinical Radiology. 2024 Jan 1;79(1):e41-7. doi: https://doi.org/10.1016/j.crad.2023.09.022

Misera L, Müller-Franzes G, Truhn D, Kather JN. Weakly Supervised Deep Learning in Radiology. Radiology. 2024 Jul 23;312(1):e232085. doi: https://doi.org/10.1148/radiol.232085

Fernandez-Quilez A. Deep learning in radiology: ethics of data and on the value of algorithm transparency, interpretability and explainability. AI and Ethics. 2023 Feb;3(1):257-65. doi: http://dx.doi.org/10.1007/s43681-022-00161-9

Sheng C, Wang L, Huang Z, Wang T, Guo Y, Hou W, Xu L, Wang J, Yan X. Transformer-based deep learning network for tooth segmentation on panoramic radiographs. Journal of systems science and complexity. 2023 Feb;36(1):257-72. doi: https://doi.org/10.1007/s11424-022-2057-9

Minoo S, Ghasemi F. Automated Teeth Disease Classification using Deep Learning Models. International Journal of Applied Data Science in Engineering and Health. 2024 Sep 18;1(2):23-31. https://ijadseh.com/index.php/ijadseh/article/view/10/12

Polizzi A, Quinzi V, Ronsivalle V, Venezia P, Santonocito S, Lo Giudice A, Leonardi R, Isola G. Tooth automatic segmentation from CBCT images: a systematic review. Clinical Oral Investigations. 2023 Jul;27(7):3363-78. doi: https://doi.org/10.1007/s00784-023-05048-5

Dot G, Chaurasia A, Dubois G, Savoldelli C, Haghighat S, Azimian S, Taramsari AR, Sivaramakrishnan G, Issa J, Dubey A, Schouman T. DentalSegmentator: robust open source deep learning-based CT and CBCT image segmentation. Journal of Dentistry. 2024 Jun 13:105130. doi: https://doi.org/10.1016/j.jdent.2024.105130

Sukegawa S, Tanaka F, Hara T, Yoshii K, Yamashita K, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Furuki Y. Deep learning model for analyzing the relationship between mandibular third molar and inferior alveolar nerve in panoramic radiography. Scientific reports. 2022 Oct 8;12(1):16925. doi: https://doi.org/10.1038/s41598-022-21408-9

Buyuk C, Arican Alpay B, Er F. Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods. Dentomaxillofacial Radiology. 2023 Feb 1;52(3):20220209. doi: https://doi.org/10.1259/dmfr.20220209

Taş İÇ. Application of Panoramic Dental X-Ray Images Denoising. International Journal of Innovative Engineering Applications. 2023;7(1):13-20. doi: https://doi.org/10.46460/ijiea.1134105

Hatvani J, Horváth A, Michetti J, Basarab A, Kouamé D, Gyöngy M. Deep learning-based super-resolution applied to dental computed tomography. IEEE Transactions on Radiation and Plasma Medical Sciences. 2018 Apr 16;3(2):120-8. doi: https://doi.org/10.1109/TRPMS.2018.2827239

Broll A, Goldhacker M, Hahnel S, Rosentritt M. Generative deep learning approaches for the design of dental restorations: A narrative review. Journal of Dentistry. 2024 Apr 11:104988. doi: https://doi.org/10.1016/j.jdent.2024.104988

https://www.kaggle.com/datasets/killa92/dental-x-ray-images-dataset

Published
2024-10-25
How to Cite
Minoo, S., & Ghasemi, F. (2024). A Narrative Review: Dental Radiology with Deep Learning. International Research in Medical and Health Sciences, 7(5), 23-36. https://doi.org/10.36437/irmhs.2024.7.5.C