Herd Immunity: An end to the global covid 19 pandemic crises

  • Shouvik Bhadra Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India.
  • Sweta Das Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India.
  • Sampa Biswas Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India.
  • Rajat Pal Assistant Professor and Head, Department of Microbiology and Biotechnology, Sister Nivedita University
Keywords: Accessory Proteins, Effective Reproduction Number, Herd Immunity, Microbiome, Transmembrane Protease Serine, Viral Epitopes

Abstract

A good deal of scientific and clinical information has been collected in the wake of Coronavirus disease (COVID-19). The virulence, infectious nature, and molecular diagnosis of the virus need to be studied more in order to obtain more information because the SARS-CoV-2 is undergoing a genetically normal evolution, which is a dynamic process. The immune system engages in the fight against viral infection through pathogen elimination, cellular homeostasis, tissue repair, and memory cell generation. Which are reactivated upon exposure to the same virus and preparing the body for future encounters with the virus through vaccination. As a result of vaccination or developing immunity from prior infection, a population obtains indirect protection against infectious disease. When this immune response occurs in 80% of a population, it is known as "herd immunity". SARS-CoV-2 has spread rapidly across communities. If it is to be stopped, a significant percentage of the population must be immune.

References

Siddell, S.G., Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018); Arch. Virol. 164, 2019, 943–946. Doi: https://doi.org/10.1007/s00705-018-04136-2

De Groot, R.J., In Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses (eds King, A. M. Q. et al.),2012, 806–828.

Shors, Teri., Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin, January 2021.

Wang, N., Shang, J., Jiang, S., Du, L., Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol, 2020, 11:298. doi: https://doi.org/10.3389/fmicb.2020.00298

Cagliani, R., Forni, D., Clerici, M., Sironi, M., Computational inference of selection underlying the evolution of the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2,2020, J Virol. 2020; 94(12): e00411–20. doi: https://doi.org/10.1128/JVI.00411-20

Mousavizadeh, L., Ghasemi, S., Genotype, and phenotype of COVID-19: their roles in pathogenesis. Microbiol Immunol Infect, 54-2, p159-163 2020. doi: https://doi.org/10.1016/j.jmii.2020.03.022

Kumar, S., Maurya, VK., Prasad, AK., Bhatt, MLB., Saxena, SK., Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV),2020, Virus Dis. 2020; 31(1):13–21. doi: https://doi.org/10.1007/s13337-020-00571-5

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kru ̈ger, N., Herrler, T., Erichsen, S., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, 2020, Cell. 2020; 181(2):271–80. doi: https://doi.org/10.1016/j.cell.2020.02.052

Wang, X., Xu, W., Hu, G., SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol 2020, 1-3. doi: https://dx.doi.org/10.1038%2Fs41423-020-0424-9

Fine, P.E., Herd immunity: history, theory, practice. Epidemiol, 1993, Rev. 15, 265–302. doi: https://doi.org/10.1093/oxfordjournals.epirev.a036121

Katz, S. L., and Hinman, A. R., Summary and conclusions: measles elimination meeting, 16-17 March 2000. J. Infect. Dis. 189(Suppl. 1), 2004, S43–S47. doi: https://doi.org/10.1086/377696

Lane, J. M., Mass vaccination and surveillance/containment in the eradication of smallpox. Mass Vaccination: Global Aspects — Progress and Obstacles, 17–29. doi: https://dx.doi.org/10.1007%2F3-540-36583-4_2

Theves, C., Crubezy, E., and Biagini, P., History of smallpox and its spread in human populations. Microbiol, 2006, Spectr. 4:1. doi: https://doi.org/10.1128/microbiolspec.poh-0004-2014

Phadke, V. K., Bednarczyk, R. A., Salmon, D. A., and Omer, S. B., Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis,2016, JAMA 315, 1149–1158. doi: https://dx.doi.org/10.1001%2Fjama.2016.1353

Cerf-Bensussan, N., Gaboriau-Routhiau, V., The immune system and the gut microbiota: friends or foes, 2010, Nat. Rev. Immunol. 2010, 10, 735–744. doi: https://doi.org/10.1038/nri2850

Gensollen, T., Iyer, S.S., Kasper, D.L., Blumberg, R.S., How colonization by microbiota in early life shapes the immune system. Science 2016, 2016,352, 539–544. doi: https://doi.org/10.1126/science.aad9378

Pawankar, R., Canonica, G.W., Holgate, S.T., Lockey, R.F., Blaiss, M.S., WAO White Book on Allergy; World Allergy Organization: Milwaukee, 2011, WI, USA, 2011; Volume 3. doi: https://dx.doi.org/10.1186%2F1939-4551-7-12

Platts-Mills, T.A., The allergy epidemics: 1870–2010. J. Allergy Clin. Immunol. 2015, 2015, 136, 3–13. doi: https://doi.org/10.1016/j.jaci.2015.03.048

Strachan, D.P., Hay fever, hygiene, and household size. BMJ Clin. Res. Ed. 1989, 1989, 299, 1259–1260. doi: https://dx.doi.org/10.1136%2Fbmj.299.6710.1259

Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice,2010, ISME J. 2010; 4, 232–241. doi: https://doi.org/10.1038/ismej.2009.112

Deehan, E.C., Walter, J., The fiber gap and the disappearing gut microbiome: Implications for human nutrition.Trends Endocrinol. Metab. 2016, 2016, 27, 239–242. doi: https://doi.org/10.1016/j.tem.2016.03.001

Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S., Sonnenburg, J.L., Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 2016,529, 212–215. doi: https://doi.org/10.1038/nature16504

Kwok, KO., Lai, F., Wei, WI., Wong, SYS., Tang, JWT., Herd immunity-estimating the level required to halt the covid-19 epidemics in affected countries, 2020, J Inf ;80(6): e32–e33. doi: https://doi.org/10.1016/j.jinf.2020.03.027

Lavine, JS., King, AA., Bjørnstad, ON., Natural immune boosting in pertussis dynamics and the potential for long-term vaccine failure,2011, Proc Natl Acad Sci 108(17):7259–7264. doi: https://dx.doi.org/10.1073%2Fpnas.1014394108

Long, NJ., From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med Anthropol Theory, 2020, 189-192. doi: https://doi.org/10.1080/00221309.2020.1860890

Hospi Medica International staff writers, Sweden’s coronavirus strategy targeting herd immunity could be adopted globally, say analysts, 2020. https://www.hospimedica.com/covid-19/articles/294782383/swedens-coronavirus-strategy-targeting-herd-immunity-could-be-adopted-globally-say-analysts.html

Jung, F., Krieger, V., Hufert, FT., Ku ̈pper, J-H., Herd immunity or suppression strategy to combat covid-19, 2020, Clin Hemorheol Microcircul (Preprint):13–17. doi: https://doi.org/10.3233/ch-209006

World Health Organization, Covid-19 Sweden, India, UK, US data, 2020.

Cohen, J., Kupferschmidt, K., Countries test tactics in ‘war’ against covid-19, 2020. doi: https://doi.org/10.1126/science.367.6484.1287

Murhekar, M., Bhatnagar, T., Selvaraju, S., Rade, K., Saravanakumar, V., Vivian Thangaraj, J., Prevalence of SARS-CoV-2 infection in India: Findings from the national serosurvey, May-June 2020, Indian J Med Res; 152(1):48. doi: https://doi.org/10.4103/ijmr.ijmr_3290_20

M. Alweshah, S. Alkhalaileh, M.A. Al-Betar et al., Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis, Knowledge-Based Systems (2021), doi: https://doi.org/10.1016/j.knosys.2021.107629

Asha shelly, Priya Gupta, Rahul Ahuja, Sudeepa Srichandan, Jairam Meena, Tanmay Majumder, Impact of microbiota: A paradiagram for evolving herd immunity against viral diseases, 2020, 12, 1150. doi: https://doi.org/10.3390/v12101150

Shereen, MA., Khan, S., Kazmi, A., Bashir, N., Siddique, R., COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res.,2020,91-98,doi: https://doi.org/10.1016/j.jare.2020.03.005

Vignesh, R., Shankar, EM., Velu, V., and Thyagarajan, SP., Is Herd Immunity Against SARS-CoV-2 a Silver Lining, 2020, Front. Immunol. 11:586781. doi: https://doi.org/10.3389/fimmu.2020.586781

Zhou, P., Yang, XL., Wang, XG., Hu, B., Zhang, L., Zhang, W., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. doi: https://doi.org/10.1038/s41586-020-2012-7

Zhang, T., Wu, Q., Zhang, Z., [2020], Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. Page 1346-1351, doi: https://doi.org/10.1016/j.cub.2020.03.022

Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 2020, 12(4), 372. doi: https://doi.org/10.3390/v12040372

Andersen, KG., Rambaut, A., Lipkin, WI., Holmes, EC., Garry, RF., The proximal origin of SARS-CoV-2. Nat Med., 2020. doi: https://doi.org/10.1038/s41591-020-0820-9

Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441(7089), 101-105. doi: https://doi.org/10.1038/nature04734

Mathew, D., Giles, JR., Baxter, AE., Oldridge, DA., Greenplate, AR., Wu JE., Deep immune profiling of COVID-19 patients reveals distinct immune types with therapeutic implications. Science, 2020, eabc8511, doi: https://doi.org/10.1126/science.abc8511

Jenni, Pant., Sharon, Stranford., Patricia, jones., Judith, A. Owen., Kuby immunology 8th edition. Mo H, Zeng G, Ren X, et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology, 2006.

Huang, AT., Garcia-Carreras, B., Hitchings, M.D.T., A systematic review of antibody mediated immunity to coronaviruses: kinetics,correlates of protection, and association with severity. Nat Commun,2020, 11(1), doi: https://doi.org/10.1038/s41467-020-18450-4

Syal, K., COVID‐19: Herd immunity and convalescent plasma transfer therapy. Journal of Medical Virology, 2020, 92(9), 1380–1382. doi: https://doi.org/10.1002/jmv.25870

Mallory, M. L., Lindesmith, L. C., & Baric, R. S., Vaccination-induced herd immunity: Successes and challenges. Journal of Allergy and Clinical Immunology, 2018, 142(1), 64–66. doi: https://doi.org/10.1016/j.jaci.2018.05.007

Mo, H., Zeng, G., Ren, X., Li, H., Ke, C., Tan, Y., Zhong, N., Longitudinal profile of antibodies against SARS-corona virus in SARS patients and their clinical significance, 2006, Respirology; 11(1),49–53. doi: https://doi.org/10.1111/j.1440-1843.2006.00783.x

Jefferson, T., Foxlee, R., Mar, C. D., Dooley, L., Ferroni, E., Hewak, B., Rivetti, A., Physical interventions to interrupt or reduce the spread of respiratory viruses: systematic review, 2007, BMJ, 336(7635), 77–80. doi: https://doi.org/10.1136/bmj.39393.510347.be

Glass, R., Glass, L., Beyeler, W., & Min, H., Targeted Social Distancing Designs for Pandemic Influenza. Emerging Infectious Diseases, 2006, 12(11), 1671–1681. doi: https://dx.doi.org/10.3201%2Feid1211.060255

Grice, E. A., & Segre, J. A., The Human Microbiome: Our Second Genome. Annual Review of Genomics and Human Genetics, 2012, 13(1), 151–170. doi: https://dx.doi.org/10.1146%2Fannurev-genom-090711-163814

Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L., An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell, 2005, 122(1), 107–118. doi: https://doi.org/10.1016/j.cell.2005.05.007

Round, J. L., & Mazmanian, S. K., Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences, 2010, 107(27), 12204–12209. doi: https://doi.org/10.1073/pnas.0909122107

Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Cerf-Bensussan, N., The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity, 2009, 31(4), 677-689. doi: https://doi.org/10.1016/j.immuni.2009.08.020

Penders, J., Vink, C., Driessen, C., London, N., Thijs, C., & Stobberingh, E. E., Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiology Letters, 2005, 243(1), 141–147. doi: https://doi.org/10.1016/j.femsle.2004.11.052

Gritz, E. C., & Bhandari, V., The Human Neonatal Gut Microbiome: A Brief Review. Frontiers in Pediatrics, 2015, 3. doi: https://doi.org/10.3389/fped.2015.00017

Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G., The infant microbiome development: mom matters. Trends in Molecular Medicine, 2015, 21(2), 109–117. doi: https://doi.org/10.1016/j.molmed.2014.12.002

Hunt, K. M., Foster, J. A., Forney, L. J., Schütte, U. M. E., Beck, D. L., Abdo, Z., McGuire, M. A., Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS ONE, 2011, 6(6), e21313. doi: https://doi.org/10.1371/journal.pone.0021313

Duranti, S., Lugli, G. A., Milani, C., James, K., Mancabelli, L., Turroni, F., Ventura, M., Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution. Environmental Microbiology, 2019, 21(10), 3683-3695. doi: https://doi.org/10.1111/1462-2920.14705

Pérez-Pérez, A., Vilariño-García, T., Fernández-Riejos, P., Martín-González, J., Segura-Egea, J. J., & Sánchez-Margalet, V., Role of leptin as a link between metabolism and the immune system. Cytokine & Growth Factor Reviews, 2017, 35, 71–84. doi: https://doi.org/10.1016/j.cytogfr.2017.03.001

Cava, A. L., & Matarese, G., The weight of leptin in immunity. Nature Reviews Immunology, 2004, 4(5), 371–379. doi: https://doi.org/10.1038/nri1350

Kim, C. H., Park, J., & Kim, M., Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Network, 2014, 14(6), 277-288. doi: https://dx.doi.org/10.4110%2Fin.2014.14.6.277

Cha, H.-R., Chang, S.-Y., Chang, J.-H., Kim, J.-O., Yang, J.-Y., Kim, C.-H., & Kweon, M.-N., Downregulation of Th17 Cells in the Small Intestine by Disruption of Gut Flora in the Absence of Retinoic Acid. The Journal of Immunology, 2010, 184(12), 6799–6806. doi: https://doi.org/10.4049/jimmunol.0902944

Plotkin, S. A., & Plotkin, S. L., The development of vaccines: how the past led to the future. Nature Reviews Microbiology, 2011, 9(12), 889-893. doi:https://doi.org/10.1038/nrmicro2668

Xia, Y., Zhong, L., Tan, J., Zhang, Z., Lyu, J., Chen, Y., Li, S., How to Understand “Herd Immunity” in COVID-19 Pandemic. Frontiers in Cell and Developmental Biology, 2020, 8, doi: https://doi.org/10.3389/fcell.2020.547314

Vyas T. India in second Coronavirus Disease-2019 pandemic emergency: A brief review. J Prim Care Dent Oral Health 2021; 2:62-5. doi: https://doi.org/10.4103/jpcdoh.jpcdoh_20_21

Vyas T, Konidena A, Nagi R, Misra D. Novel Coronavirus brings a New Challenge for Oral Health-Care Professionals. J Int Clin Dent Res Organ 2020; 12:87-93. Doi: https://doi.org/10.4103/jicdro.jicdro_54_20

Vyas T, Khanna SS, Vadlamudi A, Bagga SK, Gulia SK, Marripudi M. Corona virus disease bring a new challenge for the dentistry: A review. J Family Med Prim Care 2020; 9:3883-3889. doi: https://doi.org/10.4103/jfmpc.jfmpc_589_20

Published
2021-11-15
How to Cite
Bhadra, S., Das, S., Biswas, S., & Pal, R. (2021). Herd Immunity: An end to the global covid 19 pandemic crises. International Research in Medical and Health Sciences, 4(5), 12-29. https://doi.org/10.36437/irmhs.2021.4.5.C